Insights from Combined Age-related Models
0. BACKGROUND
1. THE PROBLEM
2. A SOLUTION
3. RESULTS
4. APPLICATION TO THE ORIGINAL PROBLEM

Section 0

BACKGROUND
Background

The lab in Edinburgh collects & analyses tissue:

• Cryopreserved human ovarian cortex
• Part of the Fertility Preservation service
• Tissue is retained for future re-implantation
• A small amount is assessed
 – For possibility of re-infection
 – Estimate ovarian reserve
• Standard calculation is Mean Follicle Density
 – Estimate of non-growing follicles (NGFS) per cubic millilitre of cortical tissue
Female cancer patients age <18 at diagnosis
01/01/1996 - 30/06/2012
n = 410

Offered cryopreservation
n = 34

Tissue cryopreserved
n = 20

Deceased
n = 1

<12 years old
n = 4

On COCP
n = 1

Procedure declined
n = 13

Poor communication
n = 1

Uterine factor
n = 1

Parental choice
n = 2

Too unwell
n = 9

Procedure unsuccessful
n = 1

Deceased
n = 1

<12 years old
n = 1

On COCP
n = 1

Still on treatment
n = 4

Insufficient information on follow-up
n = 42

Deceased
n = 81

<12 years old
n = 91

Not offered cryopreservation
n = 376

Lost to follow-up
n = 1

<12 years old
n = 2

Insufficient information on follow-up
n = 42

n = 141

n = 6

n = 14

= cryopreservation offered.
= reasons for not having tissue cryopreserved.
= patients in study eligible for ovarian function evaluation.
After 10 years: HR 0.018; p < 0.0000001
K-M for offered group 0.65 (95% CI 0.47-0.90)
K-M for not-offered group 0.99 (95% CI 0.98-1.00)
Ewings sarcoma localised T 7 Vertebrae (Age 12) – unexpected contamination of ovarian biopsy
- **Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation**

- **Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults**

- **Fertility preservation in pre-pubertal girls with cancer: the role of ovarian tissue cryopreservation**
 - W H B Wallace, T W Kelsey, R A Anderson
Section 1

THE PROBLEM
Unexpected MFD numbers

- Patients receiving ABVD chemotherapy appeared to have higher than expected MFD
- Patients receiving other chemo regimes appeared to have reduced MFD
- Untreated patients had normal MFD

But

1. Increased MFD is impossible according to our understanding of ovarian reserve
2. There was no age-related model for MFD in healthy subjects
“Women are born with a finite number of germ cells (GC), which cannot be replaced.”
 – Homepage of Richard Anderson

“NGFs are formed in large numbers in the fetal ovary in humans with peak population occurring at 20–22 weeks gestation”

“The human ovary contains a fixed number of non-growing follicles (NGFs) established before birth that decline with increasing age culminating in the menopause at 50–51 years.”
 – (Baker, 1963; Wallace and Kelsey, 2010; Mamsen et al., 2011)
• Follicular density in ovarian biopsy of infertile women: a novel method to assess ovarian reserve
 – A Lass et al.
• MFD routinely used from age 30 years up
• Sparse data and no normative results for younger ages
• Data collected at Copenhagen & Edinburgh for fertility preservation investigations
Section 2

A SOLUTION
Combine Existing Models

- We have a normative model of NGF population for all ages up to menopause
- *Human ovarian reserve from conception to the menopause*
 - W H B Wallace, T W Kelsey
- We also have an age-related model of ovarian volume
- *Ovarian volume throughout life: a validated normative model*
 - T W Kelsey, S K Dodwell, et al.
The NGF model is the standard reference

- Data-driven
- Aggregated data from multiple sources

Externally validated in 2015

The relation between variation in size of the primordial follicle pool and menopause: a cohort comparison of observed and predicted distribution of age at menopause

- M Depmann, J Faddy, et al.
- *Journal of Clinical Endocrinology and Metabolism* 100(6): 2015
The Wallace-Kelsey Model
(Five parameter asymmetric double-Gaussian cumulative curve)

log_{10}(y) = \frac{a}{4} \left[1 + \text{Erf} \left(\frac{x+b+\frac{c}{d\sqrt{2}}}{d\sqrt{2}} \right) \right] \left[1 - \text{Erf} \left(\frac{x+b-\frac{c}{e\sqrt{2}}}{e\sqrt{2}} \right) \right]

• The ovarian volume model is less ubiquitous
 – Data-driven, aggregated & simulated data
• AFC and AMH are preferred as indirect measures of remaining ovarian reserve
• However, 99% correlation between log-adjusted OV and log-adjusted NGF for ages 25 – 51 years
• Ovarian volume correlates strongly with the number of non-growing follicles in the human ovary
 – TW Kelsey, WHB Wallace
 – Obstetrics and Gynecology International (2012): 305025
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071465
• A large ovary contains many NGFs
 – And a small one contains few NGFs
• We know the age of each patient
• We can predict NGF(age) and OV(age)
• Predicted MFD is simply NGF(age)/OV(age)
• But not all the ovary is cortical tissue
 – Estimate that 24% of a typical ovary consists of cortical tissue
• Prediction now is NGF/(24% of OV)
Modelling Limitations

- **Unsophisticated**
 - No attempt to use NGF and volume data to produce a 2-attribute predictor
 - But easy to explain to medical colleagues

- **No evidence that the assumption is true**
 - For the ages of interest, NGF numbers are falling and volumes are increasing
 - Potentially working against the assumption

- **The cortical proportion was an estimate**
 - As opposed to an agreed value from the literature
Section 3

RESULTS
MFD: observed vs predicted

- Expected MFD vs Observed MFD graph
- Points are scattered around the line of perfect prediction
- Most points are close to the line, indicating a good fit
MFD: Bland-Altman

Difference from Predicted MFD

Mean of Observed and Predicted MFD
• For our data:
 – 87% correlation of observed and expected
 – < 1% proportional error
 – Mean difference 2.6 NGFs

• Applied to Danish data
 – 90% correlation of observed and expected
 – 12% proportional error
 – Mean difference 3.3 NGFs

• An externally validated age-related model of mean follicle density in the cortex of the human ovary
 – M McLaughlin, TW Kelsey, et al.
Section 4

APPLICATION TO THE ORIGINAL PROBLEM
MFD: observed vs predicted

![Graph showing observed vs predicted MFD](image)
MFD: Bland-Altman

The diagram illustrates a scatter plot comparing the difference from predicted MFD against the mean of observed and predicted MFD. The plot shows a positive correlation, with most points clustering above the zero line, indicating that the predicted MFD values are generally lower than the observed MFD values.
• Blue dots are controls
 – Further external validation
• Green dots are COPDAC chemotherapy
 – Reducing the MFD, as expected
• Red dots are ABVD chemotherapy
 – Substantial & quantifiable increase in MFD for all 8 cases
• Non-growing follicle density is increased following adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy in the adult human ovary
 – M McLaughlin, T W Kelsey, et al.
• Our understanding is wrong
• Regeneration of human ovarian reserve is possible
 – At a massive rate
• We have both evidence and a specific trigger
• We have no mechanism
 – But we’re working this
• We also have no evidence that the new cells are viable
 – No **clinical** evidence; **anecdotal** evidence exists
Summary

• Models can be combined to give transformational insights
 – The contributing models need to be strong
 – Lack of sophistication can work well

• A normative age-related model of MFD allows quantification of the effects of treatment
 – Using predicted MFD before treatment as the baseline

• Effect of first line cancer treatment on the ovarian reserve and follicular density in girls under the age of 18 years
 – M El Issaoui, V Giorgione, et al.
It's all very well “making discoveries”, “saving lives” and “improving the world”, Roger. But your research is making barely any impact on social media.

Altmetric has tracked 7,361,499 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
Thank You

Any questions?